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Abstract

Introduction: Lipomatous soft-tissue tumors grow from mesenchymal
tissue, referred as lipoma and liposarcoma for benign and malignant tumors
respectively. Five subclasses of liposarcoma exist, requiring different patient
treatments. Most of the types are easily distinguishable relying on Magnetic
Resonance Imaging (MRI). But lipoma and Atypical Lipomatous Tumor
/ Well-Differentiated Liposarcoma (ALT/WDL) have overlapping MR
imaging characteristics. A biopsy is usually performed to detect cancerous
cells, and classify the tumor. However, these biopsies are invasive, costly
and unnecessary in most cases as the malignant/benign ratio is significantly
low (1/100). This work aim to provide efficient MRI-based decision support
tools to discriminate cancerous tumors, as an alternative to biopsies.

Materials et methods: 85 MRI scans from patients with lipoma or
ALT/WDL were gathered from 43 different centers with non-uniform
protocols. We compared different approaches based on three versions of
the MRI dataset: a 2D version with only one slice per patient (where the
tumor is the largest), a 3D version (with all the slices where the tumor
is visible), and a 3D version with batch-effect correction, to remove the
inter-site technical variability. Radiomic features were extracted from the
datasets, producing respectively 35 and 92 features for the 2D and 3D
collection. In parallel, the MR images were normalized for pixel intensity,
and inhomogeneities were corrected. We compared traditional machine
learning algorithms based on radiomic data, to deep learning approaches
using Convolutional Neural Networks (CNN) applied directly on MR
images. Three CNN-based architectures were compared: a custom CNN
learned from scratch, a fine-tuned pre-trained ResNet50 model, and a
XGBoost classifier based on a CNN feature extraction.



Results: The models performance were assessed using 10 cross-validation
folds. On the batch-corrected 3D radiomic dataset, we achieve to classify
correctly all the validation folds (mean AUROC = 1) using linear Support
Vector Machine (SVM) with feature selection, as well as using a Random
Forest classifier. The best image classification performance was obtained by
fine-tuning the pre-trained ResNet50 (mean AUROC = 0.878, std AUROC
= 0.11).

Conclusion: In our context of very limited observations, radiomic-based
models outperformed the image-based approaches. Importantly, the batch-
effect normalization, that removed the inter-site technical variability on
the radiomic data, had a huge effect on the models performance. With
such a small dataset, it was a hard task to train complex architectures like
CNN. Moreover, the MRI scans were acquired on various body regions,
resulting in high heterogeneity in the images, making the generalization
even harder. These exciting results on the radiomics need to be confirmed
on an external validation cohort, but could have an impact on clinical
practice to differentiate lipoma from ALT/WDL based only on MRI, and
in a wider approach, to classify all types of lipomatous soft-tissue tumors.
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Introduction

This six months internship took place in Altran Research. The latter was created in
2009 by the global engineering consulting firm Altran, in order to boost their ability
to innovate for their clients. I joined the EILiS division, which stands for Energy,
Industry and Life Sciences, to work on a e-health project.

This project was focusing on lipomatous soft-tissue tumors. These tumors grow from
mesenchymal tissue and can occur anywhere in the body. They commonly occur
in the neck, shoulders, back, abdomen, arms and thighs. A lipoma is a benign
lipomatous tumor and the most common one. It is not a cancer and is usually
harmless. A liposarcoma is a malignant lipomatous tumor. It is a rare type of cancer
that begins in the fat cells1. Liposarcoma accounts for approximately 20% of sarcoma
in adults; therefore, it is the most frequently encountered malignant soft-tissue tumor in
clinical practice [1]. In 2002, the World Health Organization published a classification
of soft-tissue tumors, subdividing liposarcoma into five classes: well-differentiated,
dedifferentiated, myxoid, pleomorphic, and mixed liposarcomas. Atypical lipomatous
tumor or well differentiated liposarcoma (ALT/WDL) is the most common liposarcoma
among the subclasses. It represents 40 to 45% of liposarcomas [2].

The patient treatment differs depending on the type of the tumor. Most of the
types are easily distinguishable relying on Magnetic Resonance Imaging (MRI). But
ALT/WDL and lipoma have overlapping MR imaging characteristics, meaning that
their MRI appearances is highly similar [3]. It is essential to differentiate these two
tumor types, because a lipoma can be treated with a marginal excision or even simply
by surveillance (if it doesn’t provide any discomfort to the patient), but an ALT/WDL
must be removed by complete resection.

1Also known as adipocytes or lipocytes, these cells are specialized in the storage of fat.
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Currently, the strategy to distinguish ALT/WDL from lipomas is based on biopsy,
followed by histological study. However, this practice is costly and invasive for
the patient. Moreover, the majority of these tumors are benign. In fact, benign
mesenchymal tumours outnumber sarcomas by a factor of at least 100 [2]. Therefore,
most of these biopsies are unnecessary.

In recent years, a field of medical imaging analysis, called radiomics, has emerged.
The latter consists in translating medical images into complex and high-dimensional
quantitative data, using data-characterization algorithms [4]. The obtained features
are then analysed by machine learning techniques.

On the other hand, convolutional deep learning methods, like convolutional neural
network (CNN), are applied directly on images. These methods have shown excellent
performance, and have already beaten the human-level performance on tasks like
image classification on large-scaled dataset [5]. The idea to apply such methods in the
context of medical imaging seems appealing. However, huge amount of data is usually
necessary to train such networks. Yet, it is a challenge to build large datasets in the
medical context, mainly because the annotation of medical imaging requires expert
knowledge from radiologists.

First, in the hope to find an alternative to costly and invasive biopsies, this project
aims to find the best MRI-based machine learning strategy to classify the malignancy
of lipomatous soft-tissue tumors. Secondly, we wish to answer a more general question
in a context where the amount of samples available for the training and the validation
of models is very limited: which approach performs the best between a classification
based on radiomic data, and deep learning methods applied directly on MR images.

A collaboration with the biomedical imaging research laboratory CREATIS (Centre
de Recherche en Acquisition et Traitement de l’Image pour la Santé) made this project
possible. In particular, they gathered the clinical data, and extracted the radiomic
features from the medical images [6], so that we could focus on the machine learning
part.

This report is split into three sections. The first section introduces the dataset, giving
insights about the two forms: radiomics and MR images. The second section focuses on
the task of classifying the tumor malignancy based on radiomics, comparing different
machine learning methods. Finally, the last part covers deep learning methods applied
on the MR images.
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The datasets

Our study was based on a private MRI dataset, built by the research laboratory
CREATIS. 85 patients with lipomatous soft tissue tumors formed the dataset. The
tumors were either lipomas or atypical lipomatous tumors / well-differentiated liposar-
comas (ALT/WDL). They were labeled by histology. The classes were approximately
balanced, as the collection contained 40 lipomas and 45 ALT/WDL. The MR images
were acquired with T1-weighted sequences, and gadolinium-contrast enhanced.

A MRI scan produces multiple 2D slices. During the majority of the internship, we
had access to only one slice for each patient: the one where the tumor was the largest.
In this report, we will refer to this version as the 2D dataset. Later, we obtained all
the slices were the tumor was visible. We call this collection the 3D dataset.

It is essential to note the important heterogeneity in our collection. First, as these
types of tumor can occur anywhere in the body, the slices were acquired on various
body regions. Secondly, the gathered data came from 43 different centers with non-
uniform protocols, 16 different MR systems from four manufacturers – General Electric
(38.8%), Siemens (37.6%), Philips (21.2%), Toshiba (2.4%) – and using three different
static fields (1.0T, 1.5T, 3.0T).

This dataset was under two forms: as radiomic features, or as raw MR images. In the
next sections, we present the latter.

2.1 Radiomics

Radiomics is an emerging field of medical imaging analysis, applicable to tomographic
images, i.e. computed tomography (CT), magnetic resonance (MR), or positron emis-
sion tomography (PET) images. The idea is to transform a raw clinical image (that
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can either be two-dimensional or three-dimensional) into a set of high-dimensional
mineable features which characterize this image. One could then build a model for
decision support, based on these extracted features, or even combined with additional
data like genomics, patient’s history, clinical features, etc. Indeed, multimodal pre-
dictive modeling could enhance a personalized medicine, that would ensure better
patient care.

The process of radiomics is composed of multiple discrete steps: (a) acquiring the
images, (b) segmenting the area / volume of interest (i.e. delineating the borders of
the tumor), (c) extracting the radiomic features, (d) mining these data to develop
classifier models. Parts (b) and (c) were executed by CREATIS laboratory. Images
were automatically loaded in in-house software developed on Matlab R2019a (The
MathWorks, Natick, USA). The tumor was manually segmented in three dimension,
slice-by-slice, by an experimented physicist (with 15 years experiences in MR imaging).
Tumor mask was next applied on fat-suppressed enhanced MR image and 92 quan-
titative radiomic features were extracted. The feature extraction was performed by
automated algorithms, and resulted in two groups of features: semantic and agnostic.
Semantic features are the common statistics to describe a tumor, e.g. by its size and
shape. Agnostic features are less common for radiologists. They are first-, second- and
higher-order statistics, that respectively describe the distribution of values of individual
voxels (based on histogram methods), the statistical interrelationships between voxels
with similar (or dissimilar) contrast values, the repetitive or nonrepetitive patterns [7].
The full list of features is summarized in Figure 2.1.

Size and shape features were directly extracted from the binary mask. Intensity
distribution features were extracted from masked MR images without normalization
or filtering of voxel intensities and from the histogram built with 256 bins. Before
the extraction of texture features, images gray levels were discretized in a smaller
number of gray levels. This operation was done using an equal probability algorithm
to define decision thresholds in the volume such as the number of voxels for a given
reconstructed level is the same in the quantized volume for all gray levels. Images
were discretized in 8, 16, 24, 32, 40, 48 and 64 grey levels and for each level four
matrix were built: GLCM (Gray-level co-occurrence matrix), GLRLM (Gray-level run
length matrix), GLSZM (Gray-level size zone matrix) and GLSZM (Neighborhood
gray tone difference matrix) from which characteristics were extracted according
to [8–14]. Frequency domain-based texture features were extracted using a Gabor
filtering. GLCM and GLRLM were computed for 4 directions (0°, 45°, 90° and 135°)
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Figure 2.1: Radiomic extraction pipeline.

with an offset of 1 pixel. For GLSZM and GLSZM, a 26 pixel connectivity was used.
For Gabor filtering, 5 scales, 6 orientations, and a minimal wavelength of 3 were used
(Fig 2.1).

Because the clinical images were acquired on multi-site with different MR systems, an
important part was to apply a post-processing data harmonization. ComBat algorithm
is a popular batch-effect correction tool, that has been shown to successfully remove
inter-site technical variability while preserving inter-site biological variability [15–17].
It was applied on the radiomic features, using the Matlab implementation available
on GitHub1.

During the internship, this radiomic dataset has evolved and resulted in different
versions:

1https://github.com/Jfortin1/ComBatHarmonization
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1. 2D radiomics, applied on the slice where the tumor area is the largest, without
batch-effect normalization (81 patients, 35 features)

2. 3D radiomics, applied on all slices where the tumor is visible, without batch-effect
normalization (85 patients, 92 features)

3. 3D radiomics, applied on all slices where the tumor is visible, with batch-effect
normalization (85 patients, 92 features)

Naturally, some size features are altered between the 2D and 3D radiomics. The tumor
area in the 2D dataset becomes the tumor volume. From the single perimeter and
equivalent diameter in 2D, the mean, the longest, and the shortest one are kept in
3D. This results in a more authentic representation of the tumor, and therefore better
characteristics on which one could build a trustworthy decision support model.

Exploratory data analysis

The target variable y was encoded as ordinal integers: 0 for a lipoma (benign tumor),
1 for an ALT/WDL (malignant tumor). The tumor size features were, in average,
well correlated with the target (e.g. Pearson correlation coefficient of 0.49 between
y and longest perimeter). In the high-order texture features, the Large zone low
gray level emphasis stands out, with a correlation coefficient of 0.63, that was the
most correlated feature with the target. In the subgroups of features (Fig 2.1), many
attributes were highly correlated between each other. See Figures A.1, A.2 in the
appendix (pages 31-32).

Using non-supervised dimensionality reduction methods (Fig 2.2) like t-SNE [18] or
UMAP [19] for visualization, we start to distinguish the two classes.

(a) PCA (b) t-SNE (c) UMAP

Figure 2.2: 2D projection of dimensionality reduction applied on 3D radiomics with
batch-effect normalization (after standardization).
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2.2 Magnetic resonance imaging

On each MRI slice, a tumor segmentation was performed, resulting in two com-
puter files: the reference_slice, where we can see the whole slice, and the
tumor_segmentation, where only the tumor appears. This last file is also called a
mask.

(a) reference_slice (b) tumor_segmentation

Figure 2.3: 2D slice of a malignant tumor located in the thigh.

See Figure A.3 in the appendix (page 33), for a visualization of all the MRI scans
with their tumor segmentation.

As mentioned in the introduction, it is a hard task to distinguish a lipoma (benign
tumor) from an ALT/WDL (malignant tumor), based on magnetic resonance imaging.
On the Figure 2.4, we observe a pixel intensity variation between the various tumors.
It might be caused by the MRI itself, due to the magnetic field inhomogeneities and
scanner-related intensity artifacts [20].

(a) Lipomas

(b) ALT/WDL

Figure 2.4: MRI comparison between lipomas and ALT/WDL.
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Moving from the 2D dataset (only one slice per patient) to the 3D dataset, we
obtained data from new patients, increasing the number of patients from 81 to 87.
More importantly, we had access to all the 2D slices where the tumor was visible. It
augmented the dataset from 81 slices to 2721.

Figure 2.5: 3D projection of an MRI scan in the thighs.

Figure 2.6: Box plot of the
slices frequency per MRI
scan.

Most scans had between 16 and 31 slices, which are
respectively the first and third quartiles. However, some
scans had more than 150 slices, the maximum being
232 slices. Usually, the malignant soft-tissue tumors
are larger in volume than the benign ones. Therefore,
because our 3D dataset was composed of slices where the
tumors are visible, we had much more slices of malignant
tumors. In fact, for one benign tumor slice, we had
approximately two malignant tumor slices (893 lipomas
for 1828 ALT/WDL). This dataset was imbalanced, as
the malignant class was much more represented, unlike
the 2D dataset with only one slice per patient.
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Tumor classification based on
Radiomics

Based on the radiomics, we compared the performance of different machine learning
classifiers. The supervised task was to label the tumors, that are either a lipoma or an
ALT/WDL. In the following sections, we briefly describe three classifiers – Support
Vector Machine, Random Forest, and Multilayer perceptron – that were optimized for
our task. Then, we compare and interpret the obtained results.

3.1 Support Vector Machine classifier

A Support Vector Machine (SVM) is a discriminative model that separates two classes
with a hyperplane. The idea is to find the optimal hyperplane that best separates
the classes. In other words, the goal is to maximize the margin around the separating
hyperplane. It introduces kernel functions to extend to non-linearly separable patterns.
The kernel trick consists in mapping original non-linear observations into a higher-
dimensional space in which they become separable, so that we can calculate the
hyperplane. To avoid overfitting, regularization can be applied on this model, by
tuning a parameter called C, resulting in larger or smaller widths for the hyperplane
margin. [21]

We used two scikit-learn [22] implementations of SVM. First, sklearn.svm.SVC based
on libsvm software, giving access to multiple kernels. Then, sklearn.svm.LinearSVC
implemented in terms of liblinear, similar to SVC with parameter kernel='linear',
but providing more flexibility in the choice of penalties and loss functions.
A standardization was applied on the features, by removing the mean and scaling
to unit variance, so that the attributes with large numeric ranges do not dominate
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attributes with smaller numeric ranges. The standardization scaler was learned only
on the training set and then applied on both sets (training and validation).
Recursive feature elimination (RFE) and cross-validated selection of the best number
of features were applied to find the best set of attributes. Another strategy was to
apply dimensionality reduction techniques to transform the original feature space into
a lower dimension. We used principal component analysis (PCA) procedure. The
number of components was selected such that the amount of variance that needed to
be explained was greater than a percentage (e.g. 99%).
Best SVM hyperparameters were found using grid search, iterating through different
kernels (linear, radial basis function (RBF), polynomial, sigmoid) and different values
for the penalty parameter C. Moreover, in the case of RBF, polymial and sigmoid
kernels, the kernel coefficient γ was fine-tuned, as well as the degree of the polynomial
kernel function. Finally, for the linear kernel, different loss functions (hinge, squared
hinge) and penalties (L1, L2) were compared, solving the dual or primal optimization
problem, using or not the intercept in the calculation.

3.2 Random Forest classifier

Random Forests [23] are based on multiple individual decision trees, learned indepen-
dently. Combined, these trees construct a powerful ensemble. The forest’s prediction
takes into account each tree vote, and retain the most picked class.

We implemented our random forest classifier with the Python library scikit-learn [22].
No standardization was applied on the features, as it has no effect on decision trees.
The number of trees in the forest was chosen with grid search, as well as the metric to
measure the quality of a split in the decision trees: either Gini impurity or information
gain. No maximum depth of the tree was specified such that all leaves were pure.

3.3 Multilayer Perceptron classifier

A multilayer perceptron (MLP) is an artificial neural network (ANN). It belongs to
the class of feedforward networks, meaning that the information always goes forward,
unlike in recurrent neural networks (RNN). MLP is based on the accumulation of
multiple layers of computational units (neurons). As input, these units take the output
from the previous layer neurons, or, in the case of the first layer, the values of the
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features in X. Each neuron computes an output by applying an activation function
on the pre-activation z(x) = wTx + b, where x, w and b are respectively the input
vector, the weights vector, and the bias. The neurons weights and biases are learned
and adjusted through back-propagation [24]. In our case of binary classification, the
final layer is a single neuron, with a sigmoid activation function: σ(z) = 1

1+e−z . This
function outputs a decimal between 0 and 1, that is the probability for the sample
to belong to the malignant class. Therefore, if this probability is lower than 0.5, we
predict that the tumor is a lipoma, otherwise we predict an ALT/WDL.

We used the Keras [25] API, with TensorFlow [26] backend, to implement the network.
A feature standardization, learned on the training set, was applied on both sets. The
fully-connected layers were defined as Dense layers, specifying the number of neurons
and an optional regularization (weight decay) to avoid overfitting. The weights were
initialized with the Glorot uniform initializer [27], and the biases with zeros. A batch
normalization [28] was optionally applied before the activation function, to reduce
the internal covariate shift by normalizing the layer inputs. This procedure might
accelerate the training because it allows us to use higher learning rates, but also to be
less careful about initialization. The Rectified Linear Unit (ReLU) was the activation
function for the hidden layers: relu(z) = max(0, z). A Dropout [29] could be added
at the end of the block (i.e. before a new fully-connected layer). The last layer was
composed of a single neuron, activated by the sigmoid function.

Figure 3.1: Example of a MLP architecture with two hidden layers of 128 and 64
units.
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The loss function was the binary cross-entropy, also known as the log loss:

l(ys, ps) = − (ys log(ps) + (1− ys) log(1− ps))

where s is a sample in the dataset, ys ∈ [0, 1] is the expected output, and ps is the
predicted probability (i.e. the output of the network). We mainly used two optimization
methods to minimize this loss: Stochastic Gradient Descent (SGD) [30] and Adam [31].
Because both methods are highly sensible to the learning rate choice, we tried different
values, and sometimes applied a rate decay. We also added a Nesterov momentum to
the SGD optimizer.

3.4 Results

In order to compare the performance of our classifiers on the three datasets, we
needed a robust validation strategy. We chose to validate the models on K-folds
cross-validation (CV). The dataset was split into k folds (i.e. subsets), one was used
for the model validation, while the k − 1 remaining formed the training set. This was
done k time, changing the validation fold at each iteration, so that all observations
were used once for validation. We chose k = 10 folds. Consequently, the 2D dataset
(81 patients) had nine folds with eight samples and one with nine. The 3D dataset (85
patients) had five folds with eight samples and five other folds with nine observations.

Figure 3.2: K-Fold cross-validation with k = 10.

To avoid imbalanced folds, we used sklearn.model_selection.StratifiedKFold,
that preserves the original representation percentage of each class. In order to use
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the same folds for the different classifiers, we set a seed at the definition of the cross-
validator. Each iteration provided metrics to evaluate the models performance. Thus,
we obtained these metrics 10 times. They were averaged together and summarized in
Table 3.1. We computed four metrics: the accuracy, the sensitivity, the sensibility,
and the area under the receiver operating characteristics (AUROC).

Accuracy = TP + TN

TP + TN + FP + FN

Sensitivity = TP

TP + FN
Specificity = TN

TN + FP

where TP, TN, FP and FN are the number of True Positive, True Negative, False
Positive, False Negative. The accuracy is the proportion of true predictions among all
the samples (without regard to the classes). The sensitivity measures the capacity
to well detect all the malignant tumors (positive class). It is also called the recall or
the true positive rate. The specificity measures the capacity to well detect all the
benign tumors (negative class). It is also called the true negative rate. Finally, we
used the AUC (Area Under The Curve) ROC (Receiver Operating Characteristics)
to measure the global performance of the model. It tells how much the model is
capable of differentiate the classes. A perfect classifier has an AUROC of 1.0, while a
random classifier scores 0.5. We also measured the standard deviation of the AUROC
(σAUC) over the 10 folds, to observe the variation of performance between the different
training-validation combinations.

Dataset Classifier Accuracy Sensitivity Specificity AUROC σAUC

2D radiomics SVM 86.4 83.0 90.0 0.950 0.07
RF 71.5 75.5 67.5 0.813 0.16
MLP 79.2 78.5 80.0 0.905 0.08

3D radiomics SVM 90.8 85.0 97.5 0.984 0.03
RF 77.8 84.0 70.0 0.818 0.14
MLP 75.1 76.5 72.5 0.857 0.12

3D radiomics SVM 100.0 100.0 100.0 1.000 0.00
with batch-effect RF 100.0 100.0 100.0 1.000 0.00
normalization MLP 94.2 93.0 95.0 0.959 0.08

Table 3.1: Validation score for each classifier on the three datasets. Metric scores were
computed on 10 CV folds and the mean was taken. σAUC is the AUROC standard
deviation over the 10 folds.
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The version of the dataset used by the classifiers has a noticeable impact on the models
performance. The 2D radiomics has less features than the 3D dataset (35 vs. 92),
that are less informative (e.g. tumor area vs. tumor volume). Moreover, it contains
less patient records (81 vs. 85). But somehow, the linear SVM managed to performs
well after a feature selection. From the 35 features, the best results were given by
keeping only seven of them (tumor area, tumor perimeter, tumor equivalent diameter,
energy, difference entropy, information measure of correlation 1, inverse difference
is homon), and by fitting the linear classifier with a regularization parameter C of
10. The performance on the different validation folds did not vary much. See the
ROC curve in the appendix A.4 (page 34). The 3D radiomics improved the SVM and
random forest performance, but not the MLP. We make the hypothesis that this was
caused by the augmentation of the number of features, adding noise and complexity to
the dataset. Although the network should "select" on its own the important features,
our dataset has many redundant attributes. In this case, a feature selection might
have improved the performance [32]. The batch-effect normalization, that removed
the multi-site acquisition variability, had a huge effect on the performance, to the
extent that SVM and random forest achieved to classify correctly all the samples of
the ten validation folds. The forest had twenty decision trees, and the splits based
on Gini impurity. The SVM used a linear kernel, had a regularization parameter
C of 1, and was solved using the primal optimization problem with the L1 penalty.
We did not find a MLP network that ended with comparable performance. In fact,
neural networks allow complex models. Even with regularization and dropout, they
tend to overfit quickly when the number of samples is limited. Such datasets need
linear and regularized models, like SVM with a linear kernel. The feature selection
strategy applied with the SVM classifier performed better that the PCA alternative.
The number of principal components were chosen such that 85%, 90%, 95% and 99%
of the variance could be explained.
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Tumor classification and detection
based on MR images

Based directly on the MR images, we tried to classify and detect the tumors. In this
part, we compare the different approaches.

4.1 Image preprocessing

Using MR images as inputs for the models is not straightforward. Multiple prepro-
cessing steps are necessary before being able to do so.

File format

We received the data as a pair of files for each image: the actual image stored in a .img
file and the associated metadata in a .hdr file. This type of storage is inconvenient
and not supported by most of the software that we used. A recent file format, and
widely supported is called NIfTI. It allows storage as a single file, with the extension
.nii or .nii.gz for the compressed version. We used FMRIB Software Library (FSL)
[33] to convert the files from the original format to the NIfTI one. We created a
Python script that iterates through all the files, and make use of fslchfiletype
command-line.

N4 Bias Field Correction

N4 Bias Field Correction [34] is a popular algorithm, known as N4ITK, that corrects
inhomogeneity in medical image data, such as low frequency is some parts of the image.
Some images of our dataset suffered a lot from this defect, which made the task of
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classifying and detecting the tumor harder for the model. We used the implementation
provided by Advanced Normalization Tools (ANTs) [35]. We found good results setting
the number of iterations to 500 and the number of fitting levels to four.

(a) Original image (b) After N4ITK (c) Bias field

Figure 4.1: Application of the N4ITK algorithm on a 2D slice with a malignant tumor,
located in the breast.

Intensity normalization correcting inter-images intensity variation

When working on MRI, it is essential to normalize the images in post-acquisition.
In fact, MR images do not have a consistent intensity scale. Two acquisitions with
the same protocol, the same MR scanner and even the same patient, provide images
with potential variations in terms of intensities. Since the models learn to classify
and detect the tumors from these intensities, the normalization is imperative. We
used two different methods: the Z-score – which simply rescales and shifts the
intensities by Inew = (I − µ)/σ where µ and σ are the mean and standard deviation
of the intensities – and the Nyùl and Udupa method [36] – based on histograms and
involving a training and transformation step. These methods are implemented in
intensity-normalization package [37]. On Figure 4.2, we show the effect of these
normalization methods, by plotting the distribution of the pixel intensities, after
applying the different techniques.

Bounding boxes

The tumor segmentations were stored in independent files (see Fig 2.3). These files
were images (with one or more slices), where only the tumor is visible. The rest
of the image is black, encoded by a pixel intensity of 0 over 255. This is called a
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(a) Reference slices (b) N4 Bias Field Correction

(c) N4ITK with Z-score normalization (d) N4ITK with Nyùl normalization

Figure 4.2: Distribution of the pixel intensities on the 2D dataset. Each line represents
the distribution of a single image.

mask. We developed a short script to retrieve the coordinates of the tumor, indicating
its position on the image. These four coordinates allow us to draw a rectangle
around the tumor, called a bounding box. The coordinates can be the edges of the
rectangle (xmin, xmax, ymin, ymax), or its the center (x, y), width and height. The tumor
coordinates of all the images were saved together in a CSV file. By doing so, we
compressed considerably the information about the tumor localisation. The masks
(i.e. raw images containing the segmentation) took 5GB of memory, while the CSV
file needed only 80KB.
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4.2 Image classification

Image classification is a computer vision task, where the algorithm receives an image as
input, and tries to predict its class. In 2012, this specific task leaded to a revolution in
the whole computer vision field, with a tremendous performance gain in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). A new architecture, named
AlexNet [38], used deep learning and convolutional neural networks (CNN) to beat the
state of the art method. Since then, many new architectures improved this method,
surpassing the human-level performance.

In our case, the input of the model could be a full MRI slice, or an image cropped
around the tumor. Naturally, the first case is more complex, as the network has to
identify the Region of Interest (ROI) (i.e. the tumor) on the full slice before classifying
it. Because we had only a small amount of observations, acquired on different body
regions, the second case was more adapted. We decided to focus on a classification
based only on the ROI.

4.2.1 Custom CNN architecture

With the Keras API, we developed a convolutional neural network (CNN) where we
defined each layer. Because the model was learnt from scratch with a small amount
of samples, we kept the architecture simple, without too many parameters. The
input images were rescaled to a unique size (128× 128), and kept as grayscale (one
channel). The input shape was therefore (batch, 128, 128, 1). The pixel intensities
were normalized between 0 and 1. Three blocks containing a 2D convolution, a batch
normalization, a ReLU activation, a max pooling and a dropout were repeated. All
the convolutions had a kernel size of 3× 3, a padding such that size of the input and
output remained the same, and the weights initialized randomly by the Glorot uniform
initializer. The first convolution created 16 feature maps (number of channels), the
second convolution outputed 32, while the last one produced 64. The pooling size was
2×2, such that the size was divided by two after each max pooling layer. The dropout
rate was fixed to 0.5. After the three blocks, the tensor was flatten and followed by
a fully connected layer of 32 units, activated by ReLU. A final dropout was placed
before the last layer, composed of a single neuron. The latter was activated by the
sigmoid function to output a probability. Adam optimizer was used to minimize the
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model’s loss (binary cross-entropy). The network had approximately 550 000 trainable
parameters.

To augment the size of the dataset, we applied some small transformations on the
images, so that the network could not see the exact same image twice. They were
randomly flipped, zoomed, rotated and shifted. We did not used heavy transformation
like shear mapping, which would alter the true shape of the tumor.

4.2.2 Existing backbones

Many state of the art architectures, that have proved to be effective on the ILSVRC,
have been publicly released. From these backbones, ResNet [39], Inception-V3 [40] and
Xception [41] were considered for our image classification task. We decided to focus on
only one of them, ResNet, because all three had approximately the same performance.
Unlike our custom CNN, these networks have many layers and millions of parameters.
Different sizes of ResNet exist, resulting in shallower or deeper networks. We chose
ResNet50, composed of 50 layers and more than 25 millions of parameters. This
architecture is already defined in keras.applications, and can be loaded directly,
providing a model with the right layers. However, with such a small dataset and such a
deep network, it would be complicated to learn the weights from random initialization.
We make use of transfer learning. The idea is to load a model that has been pre-trained
on a large dataset, and adapt it to our specific task. We used the weights provided
by the creator of Keras, François Chollet, on its GitHub1, that were pre-trained on
ImageNet. The last layers, specific to the classification of ImageNet, were removed
such that the model output was the final residual block, providing 2048 feature maps
of size 7 × 7. That is a shape of (batch, 7, 7, 2048). On top of the latter, we added
new layers: a 2D global average pooling – giving a flat shape of (batch, 1, 1, 2048) –
and one or more blocks composed of a fully connected layer, a batch normalization, a
ReLU activation and a dropout. As usual, the final layer (i.e. output of the model)
was a single unit, activated by the sigmoid function.

The model was fine-tuned. We froze the pre-trained part of the network – meaning
that the layers parameters were not trainable – such that only our new top layers
could update their weights and biases. The network was trained this way during a
few epochs. Then, the last block of the pre-trained part was unfrozen, and trained
with a small learning rate.

1https://github.com/fchollet/deep-learning-models/releases
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Most of the pre-trained model receive RGB images as input, and ResNet is no exception.
We converted our MR images from grayscale (one channel) to RGB (three channels),
by stacking three times each image. This step added complexity and redundant
information to our inputs. It is a trade-off between using an existing architecture
already pre-trained but with unnecessary complexity, or creating a new model specific
to our needs but completely from scratch. A last preprocessing step was to rescale the
pixel intensities to the same range that was used to pre-trained the network. This can be
done with the keras.applications.resnet50.preprocess_input utility function.
The dataset was augmented following the same process explained in 4.2.1: applying
small transformations on the images.

The gap between our MRI dataset and the ImageNet dataset was large. The pre-
trained network has been learned to classify images from the daily life, and was now
asked to classify tumors from MRI slices. The transfer should not be a problem if we
had thousands of different samples, but it was not the case. We tried to find a larger
medical imaging dataset, to use it as an intermediate transfer learning step. After being
trained on the latter, the gap with our task would be much smaller. Unfortunately,
it is complicated to find large, open and labeled datasets in the biomedical field. In
the limited time of the internship, we did not succeed to acquire access to the great
BraTS data [42]. However, we found a brain tumor dataset [43] containing 3064 slices
from 233 patients, with the associated tumor type labels.

4.2.3 Existing backbones as feature extractor (FE) + ML
classifier

A CNN architecture like ResNet could be used to simply extract features. In fact, after
the 2D global average pooling layer of a ResNet50, we have 2048 features (see 4.2.2).
Normally, in a CNN, we would use fully connected layers on top of the latter, to make
our prediction. But we could also use these features as inputs for another classifier,
like a SVM. Some papers have shown a performance gain by applying this simple idea
[44]. As the task of ImageNet is too far from classifying MR images, we could not
extract the features directly with a pre-trained model. We had to retrain this model
in order to have meaningful features. We took the weights of our best model so far
(i.e. giving the best performance) from section 4.2.2, removed the layers after the 2D
global average pooling, and extracted the features for each sample. We chose a tree
based ensemble method as classifier, for its robustness to potential irrelevant features.
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This allowed us to avoid feature selection. We used the XGBoost (eXtreme Gradient
Boosting) [45] classifier, well known for being the state of the art method on many
datasets. Three hyperparameters were found using grid search: the learning rate, the
maximum depth of a tree, and the number of trees to fit.

4.2.4 Results

The models performance were assessed using the same evaluation strategy than for
the radiomics: a cross-validation on ten stratified folds. It is essential to note that
the multiple slices from a 3D image were not shuffled on different folds. They all
remained in the same fold, so that the network could not be learned and validated on
two different slices coming from the same MRI scan. Since the 3D dataset contained
more malignant slices than benign ones, we added a class weight when fitting the
model, to give more importance to each benign observation in the loss function.

Naturally, the training of these models required much more resources than for the
radiomics. Indeed, the inputs were vectors for the radiomics, and are matrices or
tensors in the image classification task. With all the features included, the largest
size for the radiomic vectors was 92, whereas the size of an image for the ResNet
architecture is 224× 224× 3. Graphics Processing Units (GPU) are more suited than
Central Processing Units (CPU) to handle such inputs. The models were trained on
an internal server, giving access to NVIDIA Tesla V100 GPUs. The Python scripts
were executed inside a TensorFlow Docker container.

Two callbacks were used during the training of the CNN (4.2.1) and the ResNet (4.2.2).
ReduceLROnPlateau was monitoring the last 10 epochs. If the validation loss stopped
improving, it divided by two the optimizer learning rate. EarlyStopping stopped the
training if the validation loss had not decreased during the last 15 epochs, restoring
the best weights to the model, and preventing overfitting.

The best results, summarized in Table 4.1, were obtained using a simple Z-score
intensity normalization on the original MR images, without a prior N4 Bias Field
Correction. The optimal hyperparameters of the N4ITK algorithm were hard to
find for each image, and time-consuming. The configurations that we tried improved
certain images, but deteriorated the others.

The CNN learned from scratch on the 2D dataset did not succeed to generalize on the
validation sets. Too many parameters had to be learned from random initialization,
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Dataset Classifier Accuracy Sensitivity Specificity AUROC σAUC

2D dataset CNN ∼50.0 ∼50.0 ∼50.0 ∼0.500 ∼0.10
(81 patients, ResNet50 79.9 80.5 79.2 0.878 0.11
81 slices) FE+XGB 77.7 73.5 82.5 0.833 0.10
3D dataset CNN 64.6 90.0 10.0 0.531 0.09
(87 patients, ResNet50 74.1 81.9 57.7 0.800 0.11
2721 slices) FE+XGB 71.6 80.3 57.0 0.782 0.13

Table 4.1: Validation score for each classifier on the 2D and 3D datasets. Metric
scores were computed on 10 CV folds and the mean was taken. σAUC is the AUROC
standard deviation over the 10 folds. CNN is the custom CNN presented in 4.2.1,
ResNet50 in 4.2.2 and FE+XGB is the CNN feature extraction + XGBoost in 4.2.3

without enough observations. On the 3D dataset, it behaved approximately the same
way, giving an AUROC similar to a random classifier. The multiple slices for each
patient were not sufficient to train the network.
The ResNet50 model, pre-trained on ImageNet, obtained the best score over all our
classifiers based on the MR images. The intermediate training on another medical
dataset did not improved this score, probably because the dataset that we used was
too small to make a difference. Using this fine-tuned ResNet50 backbone for feature
extraction, coupled to a XGBoost classifier to make the predictions, did not improved
the performance either.
With the 3D dataset, we used all the slices where the tumor was visible for the
validation of the models. For this reason, we observe a decrease in the scores compared
to the 2D dataset. Indeed, with the latter only the slice where the tumor was the
largest was used in the validation, which is naturally easier to classify than a slice
where the tumor is very small, and therefore has less details. It is a trade-off between
more data but harder – or even impossible – to classify, or less data but with only the
"best" slice for each patient.

4.3 Other approaches tried

4.3.1 Object detection / segmentation

To go further than just classify an image, one could want to detect automatically the
tumor on the slice and then classify it. This idea would be possible by solving any of
the following tasks: object detection, semantic segmentation, or instance segmentation.
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Figure 4.3: Comparison of the different detection tasks.
[https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47]

The object detection task is to draw a bounding box (i.e. a rectangle) around each
object (e.g. each person on Fig 4.3), and then classify each detection (e.g. say whether
it is a person, a dog, or a cat). Unlike object detection, semantic segmentation does not
separate multiple instances of the same class, but it classifies each pixel of an image,
giving accurate delimitation. Last but not least, instance segmentation delineates the
objects as precisely, but by considering them individually, as instances.

Well known methods for object detection are Faster R-CNN [46] and RetinaNet [47] for
high precision, YOLO [48] and SSD [49] for quick inference. U-Net [50] and DeepLabv3
[51] are efficient methods for semantic segmentation. Mask R-CNN [52] is the most
famous and a powerful method for instance segmentation.

We chose to try the Mask R-CNN approach first, because I already used it personally
for a project where it has shown its effectiveness, but also because my code could be
reused to prototype quickly to our specific task.

We used the open source implementation of Matterport [53], supporting two backbone
network architectures: ResNet50 and ResNet101; we chose the simplest one. The MRI
slices were converted to RGB and resized to a unique size. The tumor segmentations
were loaded and transformed as binary masks to be used as ground truth. We defined
two classes: benign and malignant. The Mask R-CNN model was pre-trained on
COCO dataset, a collection gathering "images of complex everyday scenes containing
common objects in their natural context" (2.5 million labeled instances in 328k images)
[54]. Small data augmentation was applied on the images (flip, rotation, translation,
Gaussian blur).

This prototype was developed when we had only access to the 2D dataset. With
such a small dataset, learning a complex task like instance segmentation – on samples
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that were never seen before – is a challenge. The results were inconclusive, and the
detection approaches were set aside, so that we could focus on the radiomics and the
image classification. We did not find the time to adapt our code to the 3D dataset and
do the training, but we believe that the detections would have been more accurate.

Figure 4.4: Examples of prediction with Mask R-CNN trained on the 2D dataset: a
perfect prediction, a good detection but misclassified, and a wrong prediction.

4.3.2 Data augmentation with Generative Adversarial
Networks

One of the best way to improve the performance of machine learning models is simply
to augment the size of the dataset. With more observations, the models can find
better patterns in the data, to fit it more accurately. This is even more typical when
working with deep learning methods, which usually outperform traditional machine
learning algorithms giving enough data.

During a period of the internship, when we had only one slice per patient (2D dataset),
we focused on techniques to augment the size of our dataset. A typical and simple
way to do this was to apply transformations on the images – such as flips, rotations,
shifts, etc. –, like we did during the training of our CNN, ResNet50 and Mask R-CNN.
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But recent papers [55–58] have shown that generating artificial and synthetic images
to add new fake samples to the dataset, could also improve the models performance
in multiple tasks, especially when the dataset is very small or imbalanced.

Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are
two trending classes of generative models. We mainly focused on GANs. The principle
behind the latter is fairly simple, two independent networks compete against each
other: a generator which tries to generate samples looking real, and a discriminator
which tries to determine whether the samples are fake or not. By fighting one another,
the networks progressively become robust, generating new realistic samples.

Our first intention was to augment the dataset for the object detection task (4.3.1). To
do so, we needed to generate new complete MRI slices, containing a tumor. We also
needed the information about the localisation of the synthetic tumor (i.e. its bounding
box) with its class to serve as ground truth. A new algorithm called Conditional
Progressive Growing of GAN (CPGGAN) was developed to augment a brain MRI
dataset for an object detection task [56]. We contacted the first author of this paper,
who kindly sent us his TensorFlow implementation of the algorithm. After multiple
tries, we did not succeed to get satisfying results on our dataset. Unlike their brain
MRI dataset where the slices were very similar, ours contained slices from various
body regions. Because our images varied a lot from one another, the generation of
realistic slices was much harder.

After this first trial, we focused on a simpler task: generating new tumors, either
benign or malignant, for image classification (4.2). A popular and powerful algorithm
to generate images with decent quality is called Deep Convolutional Generative
Adversarial Network (DCGAN) [59]. Because the dataset contained two tumor classes,
we had to train separately a DCGAN on the benign tumors, and another on the
malignant tumors. Another architecture called Auxiliary Classifier GAN (ACGAN)
[60] incorporates the class condition so that only one GAN could be trained for all
the classes. A paper [55] comparing the two methods to augment the observations of
a Computed Tomography (CT) dataset, showed better results with DCGAN, so we
decided to focus on this approach. Unfortunately, we did not have access to the GPU
server yet, and not much time to spend on this data augmentation part, so after some
inconclusive prototypes on the Google Colab GPUs, it was set aside.

With more time, we could have tried Progressive Growing of GANs (PGGAN) [61]
architecture, that can generate high quality and realistic images. We also would have
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liked to try Vector Quantised-Variational AutoEncoder (VQ-VAE) [62] that generates
samples with large diversity. We would have trained the algorithms on the 3D dataset,
by shuffling all the 2D slices.
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Conclusion

Based on MRI and machine learning approaches, we achieved to find interesting
approaches to differentiate lipoma from ALT/WDL. Using radiomic features, and
traditional machine learning classifiers such as Support Vector Machine with feature
selection, or Random Forest, we classified correctly all the samples in ten validations
folds. This was possible on the 3D batch-effect corrected radiomic dataset. The 3D
radiomics improved the models performance from the 2D radiomics. Naturally, the
features in the 3D dataset were more informative than with the 2D (e.g. tumor volume
vs. tumor area on the largest slice). The batch-effect correction, that removed the
inter-site technical variability in the dataset, largely impacted the results. Since the
collection came from 43 different centers and 16 particular MR systems, the dataset
was highly heterogeneous. Therefore, we can assert that our radiomic-based models
generalize well. Nevertheless, they would need to be retested on a new and larger
external validation cohort.

In a context of very limited observations, it was a hard task to train models based
directly on the MR images. Images are complex inputs, and usually require deep
learning architectures, that are fitted by millions of parameters. For these reasons,
large datasets are usually required to obtain satisfying results on tasks like image
classification or object detection. Using pre-trained models and transfer learning is a
possible key to bypass this lock. We believe that the pre-training of models based on
medical imaging would be an efficient alternative to well known pre-trained models
from daily life image datasets, like ImageNet or COCO. Importantly, unlike many
research papers applying CNNs to medical imaging, our MRI collection came from
multiple body regions. It is a much harder task to generalize the classification or
the detection of tumors located on various organs, due to the high heterogeneity in
the images. Moreover, radiomics encapsulated crucial information about the tumor,
such as its size. The latter information was not explicitly given to the image-based
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algorithms, as the MR images had different zoom levels. The CNN performance might
have been higher if the MR slices were set to a unique scale, but we wanted the CNN
to find other decision characteristics than the tumor size.

It is important to note that the 3D radiomics depends upon multiple manual segmen-
tations of the tumor for each patient, i.e. on all the slices where the tumor is visible.
It is a time-consuming task that is only feasible by experts. Then, radiomic features
must be extracted from the MR images and their segmentations. This non-exhaustive
pipeline is not an end-to-end solution. A possible end-to-end solution could be using
object detection or semantic/instance segmentation methods, that would locate the
tumor on the MR image directly, and classify it.

Our exciting results on the radiomics should lead to a scientific publication in a medical
journal. We believe that our research could have an impact on clinical practice to
differentiate lipoma from ALT/WDL based only on MRI, and in a wider approach, to
classify all types of lipomatous soft-tissue tumors.
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Appendix

Figure A.1: Pearson’s correlation matrix of the 3D radiomics with batch-effect
normalization.
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Figure A.2: Pearson’s correlation coefficient between y and the features of
the 3D radiomics with batch-effect normalization.
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Figure A.3: MRI slices with tumor segmentation. For each patient, the chosen
2D slice is the one where the tumor is the largest. In green, the benign tumors
(lipomas). In red, the malignant ones (ALT/WDT).
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Figure A.4: ROC curve of the best SVM configuration on 2D radiomics
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Glossary

ALT/WDL Atypical lipomatous tumor / Well-differentiated liposarcoma. 1–5, 8–11,
13, 29, 30
ANN Artificial neural network. 12
AUC Area Under the Curve. 15
AUROC Area Under the Receiver Operating Characteristics. 2, 15, 24

CNN Convolutional neural network. i, 1, 2, 4, 20–24, 26, 29, 30
CPGGAN Conditional Progressive Growing of Generative Adversarial Network. 27
CPU Central Processing Unit. 23
CREATIS Centre de Recherche en Acquisition et Traitement de l’Image pour la
Santé. 2, 4–6
CSV Comma-separated values (file format). 19
CT Computed Tomography. 5, 27
CV Cross-validation. 14, 15, 24

DCGAN Deep Convolutional Generative Adversarial Network. 27

FE Feature extractor. i, 22, 24
FN False Negative. 15
FP False Positive. 15

GAN Generative Adversarial Network. 27
GLCM Gray-Level Co-occurrence Matrix. 6
GLRLM Gray-Level Run Length Matrix. 6
GLSZM Gray-Level Size Zone Matrix. 6, 7
GLSZM Neighborhood Gray Tone Difference Matrix. 6, 7
GPU Graphics Processing Unit. 23, 27

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 20, 21

ML Machine learning. i, 22
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MLP Multilayer perceptron. 12, 13, 15, 16
MRI Magnetic Resonance Imaging. 1–5, 9, 10, 18, 20, 22, 23, 25, 27, 29, 30, 33

PCA Principal component analysis. 8, 12, 16
PET Positron Emission Tomography. 5
PGGAN Progressive Growing of Generative Adversarial Networks. 27

RBF Radial basis function. 12
ReLU Rectified Linear Unit. 13, 20, 21
RF Random Forest. 15
RFE Recursive feature elimination. 12
RGB Red, green, blue. 22, 25
RNN Recurrent neural network. 12
ROC Receiver Operating Characteristics. 15, 16, 34
ROI Region of interest. 20

SGD Stochastic Gradient Descent. 14
SVM Support Vector Machine. 2, 11, 12, 15, 16, 22, 34

TN True Negative. 15
TP True Positive. 15

VAE Variational Autoencoder. 27
VQ-VAE Vector Quantised-Variational AutoEncoder. 28

XGB XGBoost (eXtreme Gradient Boosting). 24
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